On September 12, 2019, the American Medical Devices and Diagnostics Manufacturers’ Association (AMDD) held an extraordinary general meeting at the Imperial Hotel in Tokyo. Opened by Chairman Kosuke Kato (President and Representative Director of Edwards Lifesciences Ltd.), AMDD gave a report on AMDD’s activities in the 2019. The Advocacy Committee then reported on activities over the past 10 years since the organization was an independent group. Various laws and regulations towards medical device lag from when the organization was an independent group. Various laws and regulations towards medical devices. As a result, the public is not aware of the role of single-use medical devices and has difficulty in managing their safety. In the past, some hospitals experienced problems with single-use medical devices (SUDs) and contracted with the device manufacturers and the Medical Device Safety Control Committee to improve the situation. However, the public is still uncertain about the safety of these items, and may feel there are no advantages. For patients who are adequately covered under health insurance, there is little impact due to the decrease in healthcare costs and do not feel a direct benefit. On the other hand, for patients who are not covered this is a new business opportunity. One characteristic of the R-SUD system is that the advantages and disadvantages are not straightforward as they can differ based on a patient’s perspective.

In hospitals, if medical practitioners do not understand the R-SUD system and medical device safety, they will not go smoothly. So, it will be necessary to have a key person take initiative for the R-SUD business. It takes time to collect used SUDs, so a structure must be introduced for collecting the devices. There are also other challenges with methods for dismantling and washing the devices, and there will be delays with introducing these into the market, so everyone will need to work together.

Awareness of Issues with Single-Use Medical Devices (SUDs) at Clinical Facilities and the Role of Remanufactured SUDs

Background for Single-Use Medical Devices

There are three types of medical devices: single-use medical devices, reusable medical devices, and remanufactured single-use medical devices. As a medical professional, I would like to make the role of single-use medical devices (SUDs) and raise awareness of the challenges they must overcome.

In 2014, the Ministry of Health, Labour, and Welfare (MHLW) issued a notice about the handling single-use medical devices and prohibited their reuse. The notice stated that SUDs must not be reused because hospitals cannot guarantee their safety. In the past, some hospitals washed, sterilized, and then reused reusable medical devices and some SUDs. The notice clarified that such devices cannot be reused without a special, logical reason. The special reason must meet various conditions, such as passing inspections by the Infection Control Committee and the Medical Device Safety Control Committee, and gain approval by the Medical Safety Control Committee. It could be interpreted that if the special reason meets the above criteria, devices can be reused. However, meeting these criteria was a high hurdle for individual hospitals, so the notice essentially prohibited reuse.

Introduction of Remanufactured SUDs

In July 2017, the MHLW created a new system for remanufacturing SUDs. The new system allowed the reuse of SUDs if manufacturers collected their associated medical devices and processed them through dismantling, washing, and sterilization. It became possible to reuse remanufactured SUDs as remanufactured single-use medical devices (R-SUDs). R-SUDs were authorized and registered as different products than original SUDs, and the remanufacturers and sellers bore responsibility for safety and collection, etc. In this system, if the remanufacturing process was approved, safety was recognized. Used medical devices were put in individually sealed containers and were taken to remanufacturers and sellers. However, the rules stated that there must be a person in the remanufacturing process with specialized knowledge about sterilization, such as professional as a first class sterilization technician (Certified Sterilization Specialist).
AMDD 10th Anniversary Special Lecture 2019:
How to Solve Medical Problems through Linkage and Sharing of Data

Necessity for Data Sharing

Against the backdrop of an unprecedented super-aging society, the Japan Agency for Medical Research and Development (AMED) believes their mission for data linkage and sharing is critical. According to research data on annual population change, in the 1860s, around the time of the Meiji Restoration in Japan, average lifespan was 50 years old. At that time, Japan was a relatively young country with one in five people 50 or older, while the other four were under 50. However, beginning in the 1970s, the composition of the population shifted dramatically. The percentage of the population that are 50 or older is now projected to increase until the 2040s. Beyond then, the population ratio will again shift and Japan will settle into a 21st century model in which two out of three people are 50 or older.

We have about 20 to 25 years left until the 2040s. For the development of new drugs and medical devices, that is probably only one to two cycles. We will have to speed up our efforts to adapt to this approaching era, or we won’t be able to catch up.

Sharing real-world data about patients will be essential, but there will be difficulties. Change will not come from a law or system, but it will be up to each individual. With doctors and clinical laboratory technicians in facilities, universities, academia and the industrial world, each marching to their own drum, it will not be easy to get everyone in step together.

Two Solutions from AMED

AMED has taken the challenge to address these problems with two solutions.

The first is to accumulate imaging data using Japan Excellence of Diagnostic Imaging (JEDI). AMED will collect and integrate data and use AI to make diagnoses and support treatment.

In order to use AI, it will be necessary to collect a large amount of high-quality data. Since FY2016, six academic societies have been using the Science Information NETwork (SINETs) to accumulate pathological images with annotations.

The Japanese Society of Pathology used the AI engine at the National Institute of Informatics (NIH) for pathological diagnoses to create a system that outputs highly probable diagnoses, and a pathologist makes the final judgment. This began in Fukushima Prefecture, and the system is getting results.

The second thing is the Initiative on Rare and Undiagnosed Diseases (IRUD). AMED aims to research and collect the genes of patients nationwide who have rare diseases or undiagnosed diseases, search these results from a database, set a diagnosis, and clarify the patient’s condition for treatment.

There are currently about 7,000 rare diseases, and 3,000 to 3,500 of these are related to genetic abnormalities. However, at the global level, rare diseases are more prevalent. For example, for extremely rare developmental impairments with only four reported cases in Japan, there are about 30 cases worldwide.

Many patients with this type of undiagnosed disease are inevitably forced into a never-ending journey of not receiving a diagnosis at their local hospital, not receiving a diagnosis at a regional core hospital, undergoing an inconclusive examination at a university hospital, referral to a national center, and visiting several hospitals only to end up back at the first hospital. If disease information could be collated in a single database, it would be possible to reach a diagnosis immediately. In Europe, there is a rare disease database called Orphanet. But in the future, it will be essential to build a global data sharing system. Linking databases will become more and more important.

How global databases are linked and shared is very important. The feasibility of that is based on building mutual trust, so at first, will probably start with building trusting relationships.

In Japan, extensive data on healthcare costs and fundamental data of public health care exists, but if it becomes possible to link them, this will provide important clues into the balance between healthcare and nursing care and the needs of the very elderly for healthcare and for nursing care. In order to do that, it is necessary to make reforms to informed consent that allow the secondary use of acquired data.

We only have 20 years left until the super-aging society will be upon us, so a sense of urgency is needed.

Dr. Makoto Suematsu, M.D., Ph.D.
President, Japan Agency for Medical Research and Development (AMED)

Graduated from Keio University School of Medicine in 1983.
Bachelor of Applied Science in Bioengineering, University of California, San Diego. Professor at Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University in 2001. Leader, Global Center of Excellence for Life Sciences, Human Metabolic Systems Biology, Ministry of Education, Culture, Sports, Science, and Technology, Research Director of the Suematsu Gas Battery Project, Japan Science and Technology Agency.

Strategic Basic Research Programs, Exploratory Research for Advanced Technologies, or ERATO in 2009. The Founding President of AMED since 2015. Main research interest: metabolic biochemistry.

Achieving a Society Where People with Epilepsy Can Live with Peace of Mind

The Association of Parents with Epileptic Children and the Association for the Protection of Epileptic Patients were launched in 1975, in an attempt to improve life for epilepsy patients in Japan. In 1976, the Japan Epilepsy Association (JEA) was established when both of these groups integrated.

Currently, the JEA is made up of about 5,300 members, mainly patients with epilepsy and their families, but also support staff such as medical specialists and professionals. As the Japanese branch of the International Bureau for Epilepsy (IBE), the JEA works on many topics related to epilepsy, such as encouraging public awareness, providing support for consultations, conducting research studies, and promoting policies.

For the first time in 30 years, we can say that there are about a million people in Japan with this disorder. When weak electricity flows into the brain, it “shouts out” the system for some reason and epileptic seizures occur, which are associated with various symptoms. Epilepsy is the general term for a disorder in which these epileptic seizures occur repeatedly.

Diagnoses and treatments for epilepsy have developed rapidly, and it is possible to control about 80% of all the seizure symptoms. The main treatment method is drugs, which are supplemented with surgical procedures and dietary changes. Testing and identification are important for quick and effective treatment. With epilepsy, EEG and imaging diagnoses (MRI, SPECT, PET, MEG) are important. These tests are used to identify the type of epilepsy and the type of epileptic condition, and treatment starts based on the international classifications for epilepsy and epileptic seizures.

In recent years, devices that predict epileptic seizures have been researched and developed, and efforts are being made to help maintain an environment in which epilepsy patients can have peace of mind in their social lives.

In Japan, the government and prefectures have implemented the Program for Maintaining a Regional Structure Linking Diagnosis and Treatment for Epilepsy nationwide. It is now possible to use new anti-epileptic drugs as a result of efforts by many pharmaceutical companies. In addition, we believe there are strong prospects to further develop devices for testing, identification, and treatment, and that these devices will significantly contribute to achieving a society where people with epilepsy can live with peace of mind.

Mr. Hideyuki Saito
Vice President, Japanese Physical Therapy Association (JPTA)

Japanese Physical Therapy Association (Nami no Kai)
https://www.jea-net.jp/
AMDD NEWSLETTER Vol.32

Necessity for Data Sharing

Against the backdrop of an unprecedented super-aging society, the Japan Agency for Medical Research and Development (AMDD) believes their mission for data linkage and sharing is critical.

According to research data on annual population change, in the 1960s, around the time of the Meiji Restoration in Japan, average lifespan was 50 years old. At that time, Japan was a relatively young country with one in five people 50 or older, while the other four were under 50.

However, beginning in the 1970s, the composition of the population shifted dramatically. The percentage of the population that are 50 or older is now projected to increase until the 2040s. Beyond then, the population ratio will again shift and Japan will settle into a 21st century model in which two out of three people are 50 or older.

We have about 20 to 25 years left until the 2040s. For the development of new drugs and medical devices, that is probably only one to two cycles. We will have to speed up our efforts to adapt to this approaching era, or we won’t be able to catch up.

Sharing real-world data about patients will be essential, but there will be difficulties. Change will not come from a law or system, but it will be up to each individual. With doctors and clinical laboratory technicians in facilities, universities, academia and the industrial world, each marching to their own drummer, it will not be easy to get everyone in step together.

Two Solutions from AMED

AMED has taken the challenge to address these problems with two solutions.

The first is to accumulate imaging data using Japan Excellence of Diagnostic Imaging (JEDI). AMED will collect and integrate data and use AI to make diagnoses and support treatment.

In order to use AI, it will be necessary to collect a large amount of high-quality data. Since FY2016, six academic societies have been using the Science Information Network (SINET) to accumulate pathological images with annotations.

The Japanese Society of Pathology used the AI engine at the National Institute of Informatics (NII) for pathological diagnoses to create a system that outputs highly probable diagnoses, and a pathologist makes the final judgment. This began in Fukushima Prefecture, and the system is getting results.

The second thing is the Initiative on Rare and Undiagnosed Diseases (IRUD). AMED aims to research and collate the genes of patients nationwide who have rare diseases or undiagnosed diseases, search these results from a database, set a diagnosis, and clarify the patient’s condition for treatment.

There are currently about 7,000 rare diseases, and 3,000 to 3,500 of these are related to genetic abnormalities. However, at the global level, rare diseases are more prevalent. For example, for extremely rare developmental impairments with only four reported cases in Japan, there are about 30 cases worldwide.

Many patients with this type of undiagnosed disease are inevitably forced into a never-ending journey of not receiving a diagnosis at their local hospital, not receiving a diagnosis at a regional core hospital, undergoing an inconclusive examination at a university hospital, referral to a national center, and visiting several hospitals only to end up back at the first hospital. If disease information could be collated in a single database, it would be possible to reach a diagnosis immediately. In Europe, there is a rare disease database called Orphanet. But in the future, it will be essential to build a global data sharing system. Linking databases will become more and more important.

How global databases are linked and shared is very important. The feasibility of that is based on building mutual trust, so at first, this will probably start with building trusting relationships.

In Japan, extensive data on healthcare costs and fundamental data about healthcare care exists, but if it becomes possible to link them, this will provide important clues into the balance between healthcare and nursing care and the needs of the very elderly for healthcare and for nursing care. In order to do that, it is necessary to make reforms to informed consent that allow the secondary use of acquired data.

We only have 20 years left until the super-aging society will be upon us, so a sense of urgency is needed.

The Association of Parents with Epileptic Children and the Association for the Protection of Epileptic Patients were launched in 1973. At the start of the movement to improve life for epilepsy patients in Japan, in 1976, the Japan Epilepsy Association (JEA) was established when both of these groups integrated. Currently, the JEA is made up of about 5,380 members, mainly patients with epilepsy and their families, but also support staff such as medical specialists and professionals. As the Japanese branch of the International Bureau for Epilepsy (IBE), the JEA works on many types of topics regarding epilepsy, such as encouraging public awareness, providing support for consultations, conducting research studies, and promoting policies.

In Japan, extensive data on healthcare costs and fundamental data about healthcare care exists, but if it becomes possible to link them, this will provide important clues into the balance between healthcare and nursing care and the needs of the very elderly for healthcare and for nursing care. In order to do that, it is necessary to make reforms to informed consent that allow the secondary use of acquired data.

We only have 20 years left until the super-aging society will be upon us, so a sense of urgency is needed.

In the Physical Therapists and Occupational Therapists Act (established June 29, 1965), physical therapy is defined as “Having people with physical disabilities engage in therapeutically gymnastics or other exercise, and adding electrical stimulation, massages, heating, or other physical means, mainly in order to restore their basic abilities to move.” Physical therapy is promoted in today’s regional comprehensive care system by medical insurance, nursing care insurance, and regional care conferences. It is recognized as an occupation that concentrates on supporting self-reliance and has strong potential for preventative nursing care, measures against dementia, and linking healthcare and nursing care more specifically. It can be said that physical therapy is coming closer to international classifications for epilepsy and epileptic seizures. In recent years, devices that predict epileptic seizures have been researched and developed, and efforts are being made to help maintain an environment in which epilepsy patients can have peace of mind in their social lives.

In Japan, the government and prefectures have implemented the Program for Maintaining a Regional Structure Linking Diagnosis and Treatment for Epilepsy nationwide. It is now possible to use new anti-epileptic drugs as a result of efforts by many physical therapists. In addition, we believe there are strong prospects to further develop devices for testing, identification, and treatment, and that these devices will significantly contribute to achieving a society where people with epilepsy can live with peace of mind.

In Japan, the government and prefectures have implemented the Program for Maintaining a Regional Structure Linking Diagnosis and Treatment for Epilepsy nationwide. It is now possible to use new anti-epileptic drugs as a result of efforts by many physical therapists. In addition, we believe there are strong prospects to further develop devices for testing, identification, and treatment, and that these devices will significantly contribute to achieving a society where people with epilepsy can live with peace of mind.
On September 12, 2019, the American Medical Devices and Diagnostics Manufacturers’ Association (AMDD) held an extraordinary general meeting at the Imperial Hotel in Tokyo to discuss medical device matters. Chairman Kosuke Kato (President and Representative Director of Edwards Lifesciences Ltd.) gave a report on AMDD’s activities in 2019. The Advisory Committee then reported on activities over the past 10 years since the group was founded and spoke about future advocacy activities. The general meeting closed with congratulatory speeches from several people who had collaborated with the Japanese medical device industry, including Mr. Shinichi Nishimura (Senior Commercial Attaché, Commercial Department, the U.S. Embassy in Japan), Mr. Kenichi Matsumoto (Chairman, Japan Federation of Medical Devices Associations [JMEDA]), and Dr. Satoshi Inamura (Vice President, Japan Medical Association [JMA]).

Connected AEDs Provide a New Approach for Outside-of-Hospital Cardiac Arrests

According to FY2018 statistics by the Fire and Disaster Management Agency, the number of cardiac arrest cases witnessed outside of hospital facilities rose to 25,538 per year and is anticipated to increase annually. Out of these cases, the number in which AEDs were used by rescuers who happened to be there also increased. Cardiac arrest occurs suddenly without warning and causes convulsions (interruption of electrical activity occurs). The heart then stops its function as a pump which sends blood throughout the body, and leads to death within a short time. It is said that early defibrillation using AEDs is the only method that can restore the heart to its normal rhythm.

For sudden cardiac arrest cases, prevention, early awareness, calling the Japanese 119 emergency number, the use of cardiopulmonary resuscitation and AEDs (basic life-support treatment taken by rescuers) and the future of Japan healthcare.

Value of Medical Technology

<Diagnosing and Treating Heart Conditions>

Dr. Masaki Takashima, M.D., Ph.D.

Graduated from the Osaka University Faculty of Medicine in 1985. Professor, Department of Surgery at Osaka University Hospital.

Dr. Masaki Takashima, M.D., Ph.D.

Graduated from the Osaka University Faculty of Medicine in 1985. Professor, Department of Surgery at Osaka University Hospital.

In July 2017, the MHLW created a new system for remanufacturing R-SUDs. The new system allowed the reuse of SUDs if manufacturers collected their associated medical devices and processed them through dismantling, washing, and sterilization. It became possible to reuse reprocessed SUDs as remanufactured single-use medical devices (R-SUDs).

The 10th Anniversary Booklet AMDD issued a 10th anniversary booklet called “AMDD: 10-Year History and Beyond!” that summarized the history of AMDD over the past 10 years since its founding in 2009 and AMDD’s thoughts for the future. This publication presented information such as proposals for maintaining and revising the various laws and regulations towards resolving device legis. AMDD had had a major impact in overcoming device leg through the organization was an ACCG Medical Device and NO Subcommittees to its work today. Included are also articles about the experiences of expert advisors of the Central Social Insurance Medical Committee, and gain approval by the Medical Safety Control Committee. It could be interpreted that if the special reason meets the above criteria, devices can be reused. However, meeting these criteria was a high hurdle for individual hospitals, so the notice essentially prohibited reuse.

Introduction of Remanufactured SUDs

In July 2017, the MHLW created a new system for remanufacturing R-SUDs. The new system allowed the reuse of SUDs if manufacturers collected their associated medical devices and processed them through dismantling, washing, and sterilization. It became possible to reuse reprocessed SUDs as remanufactured single-use medical devices (R-SUDs).

R-SUDs were authorized and registered as different products than original SUDs, and the remanufacturers and sellers bore all responsibility for safety and collection, etc. In this system, if the remanufacturing process was approved, safety was recognized. Used medical devices were put into individually sealed containers and were taken to remanufacturers and sellers. However, the rules stated that there must be a person in the remanufacturing process with specialized knowledge about sterilization, such as professional with first class sterilization technician (Certified Sterilization Specialist).

CSS issued by the Japanese Society of Medical Instrumentation. The remanufactured parts were assigned new serial numbers to create traceability and track the number of times an item was remanufactured, and underwent stringent checks before being resold. Hospitals are unable to conduct these measures, so businesses must enter this market gap.

Background for Single-Use Medical Devices

There are three types of medical devices: single-use medical devices, reusable medical devices, and remanufactured single-use medical devices. As a medical professional, I would like to more widely share the role of single-use medical devices (SUD) and raise awareness of the challenges they must still overcome.

In 2014, the Ministry of Health, Labour, and Welfare (MHLW) issued a notice about the handling single-use medical devices and prohibited their reuse. The notice stated that SUDs must not be reused because hospitals cannot guarantee their safety. In the past, some hospitals washed, sterilized, and then reused reusable medical devices and some SUDs. The notice clarified that such devices cannot be reused without a special, logical reason. The special reason must meet various conditions, such as passing inspections by the Infection Control Committee and the Medical Device Safety Control Committee, and gain approval by the Medical Safety Control Committee. It could be interpreted that if the special reason meets the above criteria, devices can be reused. However, meeting these criteria was a high hurdle for individual hospitals, so the notice essentially prohibited reuse.

Background for Single-Use Medical Devices

For sudden cardiac arrest cases, prevention, early awareness, calling the Japanese 119 emergency number, the use of cardiopulmonary resuscitation and AEDs (basic life-support treatment taken by rescuers) and the future of Japan healthcare.